Effects of melatonin on adult human mesenchymal stem cells in osteoblastic differentiation. An experimental in vitro study

Submitted: 1 June 2017
Accepted: 1 June 2017
Published: 30 June 2015
Abstract Views: 979
PDF: 529
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Aim The purpose of this study was to determine if different melatonin concentrations enhances human adult mesenchymal stem cells (MSCs) differentiation into osteoblasts, in comparison with MSCs cultured with dexamethasone (DEX).

Material and Methods MSCs were treated with different melatonin concentrations. Specifically: Group I: untreated MSCs; Group II: MSCs exposed to physiological doses of melatonin of 0.01 µM; Group III: MSCs exposed to 50 µM melatonin; Group IV: MSCs exposed to 100 µM melatonin; Group V: MSCs exposed to 150 µM melatonin; Group VI: MSCs exposed to 100 µM of DEX. Cell viability, adhesion, growth, differentiation and activity were evaluated at different time points (3, 7, 14, 21 and 28 days) using the following assays MTT, SEM, Flowcytometry, ALP activity, Alizarin Red staining and RT-PCR. 

Results Melatonin stimulated the viability and alizarin red activity of MSCs in a dose-dependent manner. Melatonin 50 µM significantly increased ALP activity, especially after 21 and 28 days of culture. A significant decrease in the expression of membrane markers CD75, CD105 and CD90 was recorded over time, in the presence of melatonin; therefore, the MSCs were early differentiated into osteoblasts regardless of the melatonin concentration.  

Conclusion These results demonstrated that melatonin directly accelerated the differentiation of human stem cells into osteoblasts and also suggested that melatonin could be applied as a pharmaceutical agent to promote bone regeneration.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 2007;42:28-42.
Tan DX, Manchester LC, Reiter RJ Qi WB, Zhang M, Weintraub ST, Cabrera J, Sainz RM, Mayo JC. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1999;1472:206-214.
Simonneaux V, Ribelayga C. Generation of the Melatonin Endocrine Message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003;55:325-395.
Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 2007;52:11-28.
Nakade O, Koyama H, Ariji H, Yajimi A, Kaku T. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999;27:106-110.
Roth JA, Kim BG, Lin WL, Cho MI. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 1999;274:22041-22047.
Ladizesky MG, Cutrera RA, Boggio V, Somoza J, Centrella JM, Mautalen C, Cardinali DP. Effect of melatonin on bone metabolism in ovariectomized rats. Life Sci 2001;70:557-565.
Koyama H, Nakade O, Takada Y, Kaku T, Lau KH. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 2002;17:1219-1229.
Reiter RJ, Tan DX, Allegra M. Melatonin: Reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuro Endocrinol Lett 2002;23:3-8.
Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 2002;23:639-644.
Siegrist C, Benedetti C, Orlando A, Beltrán JM, Tuchscherr L, Noseda CM, Brusco LI, Cardinali DP. Lack of changes in serum prolactin, FSH, TSH, and estradiol after melatonin treatment in doses that improve sleep and reduce benzodiazepine consumption in sleep-disturbed, middle-aged, and elderly patients. J Pineal Res 2001;30:34-42.
Cardinali DP, Ladizesky MG, Boggio V, Cutrera RA, Mautalen C. Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res 2003;34:81-87.
Ladizesky MG, Boggio V, Cutrera RA Mondelo N, Mastaglia S, Somoza J, Cardinali DP. Melatonin effect on bone metabolism in rats treated with methylprednisolone. J Pineal Res 2006;40:297-304.
Suzuki N, Somei M, Seki A, Reiter RJ, Hattori A. Novel bromomelatonin derivatives as potentially effective drugs to treat bone diseases. J Pineal Res 2008;45:229-234.
Ostrowska Z, Kos-Kudla B, Nowak M, Swietochowska E, Marek B, Gorski J, Kajdaniuk D, Wolkowska K. The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 2003;37: 211-224.
Calvo-Guirado JL, Gómez-Moreno G, Barone A, Cutando A, Alcaraz-Baños M, Chiva F, López-Marí L, Guardia J. Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants. J Pineal Res 2009;47:164-172.
Calvo-Guirado JL, Ramírez-Fernández MP, Gómez-Moreno G, Maté-Sánchez JE, Delgado-Ruiz R, Guardia J, López-Marí L, Barone A, Ortiz-Ruiz AJ, Martínez-González JM, Bravo LA. Melatonin stimulates the growth of new bone around implants in the tibia of rabbits. J Pineal Res 2010;49:356-363.
Guardia J, Gómez-Moreno G, Ferrera MJ, Cutando A. Evaluation of effects of topic melatonin on implant surface at 5 and 8 weeks in beagle dogs. Clin Implant Dent Relat Res 2011;13:262-268.
Muñoz F, López-Peña M, Miño N, Gómez-Moreno G, Guardia J, Cutando A. Topical Application of Melatonin and Growth Hormone Accelerates Bone Healing around Dental Implants in Dogs. Clin Implant Dent Relat Res 2012;14:226-235.
Takechi M, Tatehara S, Satomura, K Fujisawa K, Nagayama M. Effect of FGF-2 and melatonin on implant bone healing: a histomorphometric study. J Mater Sci Mater Med 2008;19:2949-2952.
Nakade O, Koyama H, Ariji H, Yajima A, Kaku T. Melatonin stimulates proliferation and type I collagen synthesis in human bone cells in vitro. J Pineal Res 1999;27:106-110.
Calvo-Guirado JL, Gómez-Moreno G, López-Marí L, Guardia J, Marínez-González JM, Barone A, Tresguerres IF, Paredes SD, Fuentes-Breto L. Actions of melatonin mixed with collagenized porcine bone versus porcine bone only on osteointegration of dental implants. J Pineal Res 2010;48:194-203.
Ramírez-Fernández MP, Calvo-Guirado JL, de Val JE, Delgado-Ruiz RA, Negri B, Pardo-Zamora G, Peñarrocha D, Barona C, Granero JM, Alcaraz-Baños M. Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clin Oral Investig 2013;17:147-158.
Zhang L, Su P, Xu C, Chen C, Liang A, Du K, Peng Y, Huang D. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. J Pineal Res 2010;49:364-372.
Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R, Witt-Enderby PA. Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 2010;49:222-238.
Haase HR, Ivanovski S, Waters MJ, Bartold PM. Growth hormone regulates osteogenic marker mRNA expression in human periodontal fibroblasts and alveolar bone-derived cells. J Periodontal Res 2003;38:366-374.
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-147.
Kotlarzyk MP, Lassila HC, O´neil CK, D´Amico F, Enderby LT, Witt-Enderby PA, Balk JL. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 2012;52:414-426.
Radio NM, Doctor JS, Witt-Enderby PA. Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 2006;40:332-342.
Paul H, Reginato AJ, Schumacher HR. Alizarin red S staining as a screening test to detect calcium compounds in synovial fluid. Arthritis Rheum 1983;26:191-200.
Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res 2007;42:231-239.
Cui P, Luo Z, Zhang H, Su Y, Li A, Li H, Zhang J, Yang Z, Xiu R. Effect and mechanism of melatonin’s action on the proliferation of human umbilical vein endothelial cells. J Pineal Res 2006;41: 358-362.

Supporting Agencies

How to Cite

Calvo-Guirado, J. L., Pérez-Albacete, C., Pérez Sánchez, C., Boquete-Castro, A., Maté-Sánchez de Val, J. E., Delgado Peña, J. E., Ramírez Fernández, M. P., Garcés, M., Meseguer-Olmo, L., & Gómez Moreno, G. (2015). Effects of melatonin on adult human mesenchymal stem cells in osteoblastic differentiation. An experimental in vitro study. Journal of Osseointegration, 7(2), 23–32. https://doi.org/10.23805/jo.2015.07.02.01