Evaluation of biomechanical effects of different implant thread designs and diameters on all-on-four concept

  • Z. Zor | ftmzor@gmail.com Gazi University Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Turkey. https://orcid.org/0000-0001-9647-4101
  • Y. Kılınç Gazi University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey, Turkey.
  • E. Erkmen Gazi University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey, Turkey.
  • A. Kurt Atılım University, Faculty of Engineering, Department of Manufacturing Engineering, Ankara, Turkey, Turkey.

Abstract

Aim All-on-four concept involves the use of four anterior dental implants in the edentulous jaw to overcome anatomic limitations of residual alveolar bone. The impact of implant thread design and diameter on the biomechanical performance of all-on-four concept is not yet fully understood. The purpose of this study was to investigate the biomechanical behavior of all-on-four concept with different combinations of thread designs and diameters through a three dimensional Finite Element Analysis.

Materials and methods Six three-dimensional finite element models of edentulous mandible were developed. The models included the combinations of 3.5 and 4.3 mm diameter implants with active and passive thread designs. Vertical, oblique and horizontal loads were applied anterior to the end of the cantilever. Von Mises, maximum principal and minimum principal stresses were analysed.

Results The results indicated a tendency towards stress reduction in Von Mises stress values of dental implants with the increase in diameter for both mesial and distal implants. In narrow implants active thread design  resulted in lower Von Mises stress values than passive thread design. Active thread design demonstrated higher bone stress when compared to passive thread design. The analysis also revealed the importance of mesial implant for diminishing stresses on the distal implant and their surrounding bone under horizontal and oblique loading.

Conclusion The comparison of the models suggest that use of wide implant is advantageous in the all-on-four concept. There is a biomechanical advantage in using narrow implants with active thread design in horizontally inadequate bone. The thread design was more significant in terms of increasing bone stress than  implant diameter. The mesial implant influences the biomechanical behavior of the whole design, contributing to a more favorable stress distribution under horizontal and oblique loading conditions.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

1.Özdemir Doğan D, Polat NT, Polat S, Şeker E, Gül EB. Evaluation of “All‐on‐Four” Concept and Alternative Designs with 3D Finite Element Analysis Method. Clin Implant Dent Relat Res 2014;16(4):501-510.
2. Bhering CL, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RL, Barão VA. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl 2016;69:715-725.
3. Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J Prosthodont Res 2017; 61(2):123-132.
4. De Rossi M, Santos CM, Migliorança R, Regalo SC. All on four® fixed implant support rehabilitation: a masticatory function study. Clin Implant Dent Relat Res 2014;16(4):594-600.
5. Malo P, de Araújo Nobre M, Lopes A, Moss SM, Molina GJ. A longitudinal study of the survival of All-on-4 implants in the mandible with up to 10 years of follow-up. J Am Dent Assoc 2011;142(3):310-320.
6. Maló P, Rangert B, Nobre M. “All‐on‐Four” Immediate‐Function Concept with Brånemark System® Implants for Completely Edentulous Mandibles: A Retrospective Clinical Study. Clin Implant Dent Relat Res 2003;5(Suppl 1):2-9.
7. Malo P, Rangert B, Nobre M. All‐on‐4 Immediate‐Function Concept with Brånemark System® Implants for Completely Edentulous Maxillae: A 1‐Year Retrospective Clinical Study. Clin Implant Dent Relat Res 2005;7(Suppl 1):S88-94.
8. Maló P, de Araújo Nobre M, Lopes A, Francischone C, Rigolizzo M. “All‐on‐4” Immediate‐Function Concept for Completely Edentulous Maxillae: A Clinical Report on the Medium (3 Years) and Long‐Term (5 Years) Outcomes. Clin Implant Dent Relat Res 2012;14(Suppl 1):e139-150.
9. Bellini CM, Romeo D, Galbusera F, et al. Comparison of tilted versus nontilted implant-supported prosthetic designs for the restoration of the edentuous mandible: a biomechanical study. Int J Oral Maxillofac Implants 2009;24(3):511-517.
10. Fazi G, Tellini S, Vangi D, Branchi R. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implants 2011;26(4): 752-759.
11. Lima de Andrade C, Carvalho MA, Bordin D, da Silva WJ, Del Bel Cury AA, Sotto-Maior BS. Biomechanical Behavior of the Dental Implant Macrodesign. Int J Oral Maxillofac Implants 2017;32(2): 264-270.
12. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthetic Dent 2001;85(6):585-598.
13. Liang R, Guo W, Qiao X, et al. Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study. Comput Methods Biomech Biomed Engin 2015;18(12):1340-1348.
14. Wu AY, Hsu JT, Fuh LJ, Huang HL. Biomechanical effect of implant design on four implants supporting mandibular full-arch fixed dentures: In vitro test and finite element analysis. J Formos Med Assoc 2020;119(10):1514-1523.
15. Baggi L, Pastore S, Di Girolamo M, Vairo G. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent 2013;109(1):9-21.
16. Kilic E, Doganay O. Evaluation Of Stress In Tilted Implant Concept With Variable Diameters In The Atrophic Mandible: 3D Finite Element Analysis. J Oral Implantol 2020;46(1):19-26.
17.Gümrükçü Z, Korkmaz YT, Korkmaz FM. Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study. Comput Biol Med 2017;86:47-54.
18. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis—a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24(2):80-88.
19. Kong L, Hu K, Li D, et al. Evaluation of the cylinder implant thread height and width: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2008;23(1):65-74.
20. Şimşek B, Erkmen E, Yilmaz D, Eser A. Effects of different inter-implant distances on the stress distribution around endosseous implants in posterior mandible: a 3D finite element analysis. Med Eng Phys 2006;28(3):199-213.
21. Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10(6):387-416.
22. Graf H, Graseel H, Aeberhard HJ. A method for measurement of occlusal forces in three directions. Helv Odontol Acta 1974;18:7-11.
23. Mericske-Stern R, Geering AH, Burgin WB, Graf H. Three-dimensional force measurements on mandibular implants supporting overdentures. Int J Oral Maxillofac Implants 1992;7(2):185-194.
24. Gümrükçü Z, Korkmaz YT. Influence of implant number, length, and tilting degree on stress distribution in atrophic maxilla: a finite element study. Med Biol Eng Comput 2018;56(6):979-989.
25. Kilinç Y, Erkmen E, Kurt A. Biomechanical Evaluation of Different Fixation Methods for Mandibular Anterior Segmental Osteotomy Using Finite Element Analysis, Part One: Superior Repositioning Surgery. J Craniofac Surg 2016;27(1):32-35.
26. Kilinç Y, Erkmen E, Kurt A. Biomechanical evaluation of different fixation methods for mandibular anterior segmental osteotomy using finite element analysis, part two: superior repositioning surgery with bone allograft. J Craniofac Surg 2016;27(1):36-40.
27. Kim KS, Kim YL, Bae JM, Cho HW. Biomechanical comparison of axial and tilted implants for mandibular full-arch fixed prostheses. Int J Oral Maxillofac Implants 2011;26(5):976-984.
28. Hussein MO, Rabie ME. Three-dimensional nonlinear contact finite element analysis of mandibular All-on-4 design. J Oral Implantol 2015;41(2):e12-18.
29. Naini RB, Nokar S, Borghei H, Alikhasi M. Tilted or parallel implant placement in the completely edentulous mandible? A three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2011;26(4):776-781.
30. Dundar S, Topkaya T, Solmaz MY, et al. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants. Biotechnology & Biotechnological Equipment 2016;30(1):127-133.
31. Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 2010;21(2):129-136.
32. Eazhil R, Swaminathan SV, Gunaseelan M, Kannan GV, Alagesan C. Impact of implant diameter and length on stress distribution in osseointegrated implants: A 3D FEA study. J Int Soc Prev Community Dent 2016;6(6):590-596.
33. Ding X, Liao SH, Zhu XH, Zhang XH, Zhang L. Effect of diameter and length on stress distribution of the alveolar crest around immediate loading implants. Clin Implant Dent Relat Res 2009;11(4):279-287.
34. Sannino G. All-on-4 concept: A 3-dimensional finite element analysis. J Oral Implantol 2015;41(2):163-171.
35. Pesqueira AA, Goiato MC, Filho HG, et al. Use of stress analysis methods to evaluate the biomechanics of oral rehabilitation with implants. J Oral Implantol 2014;40(2):217-228.
36. Patterson EA, Burguete RL, Thoi MH, Johns RB. Distribution of load in an oral prosthesis system: an in vitro study. Int J Oral Maxillofac Implants 1995;10(5):552-560.
37. Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis. J Prosthodont Res 2010;54(3):133-142.
38. Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig 2012;16(2):363-369.
39. Babbush CA, Kanawati A, Brokloff J. A new approach to the All-on-Four treatment concept using narrow platform NobelActive implants. J Oral Implantol 2013;39(3):314-325.
40. Bonnet A, Postaire M, Lipinski P. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys 2009;31(7):806-815.
Published
2021-09-10
Info
Issue
Section
Articles
Keywords:
All-on-four, dental implants, finite element analysis, mandible.
##article.stats##
  • Abstract views: 65

  • pdf: 26
How to Cite
Zor, Z., Kılınç, Y., Erkmen, E., & Kurt, A. (2021). Evaluation of biomechanical effects of different implant thread designs and diameters on all-on-four concept . Journal of Osseointegration, 13(3), 101-108. https://doi.org/10.23805/JO.2021.13.03.1